Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 92(2): 192-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794633

RESUMO

Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/química , Peptídeos/farmacologia , Peptídeos/química , Canais de Potássio/metabolismo , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
2.
Methods Mol Biol ; 2705: 135-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668973

RESUMO

Protein interactions are at the essence of life. Proteins evolved not to have stable structures, but rather to be specialized in participating in a network of interactions. Every interaction involving proteins comprises the formation of an encounter complex, which may have two outcomes: (i) the dissociation or (ii) the formation of the final specific complex. Here, we present a methodology to characterize the encounter complex of the Grb2-SH2 domain with a phosphopeptide. This method can be generalized to other protein partners. It consists of the measurement of 15N CPMG relaxation dispersion (RD) profiles of the protein in the free state, which describes the residues that are in conformational exchange. We then acquire the dispersion profiles of the protein at a semisaturated concentration of the ligand. At this condition, the chemical exchange between the free and bound state leads to the observation of dispersion profiles in residues that are not in conformational exchange in the free state. This is due to fuzzy interactions that are typical of the encounter complexes. The transient "touching" of the ligand in the protein partner generates these new relaxation dispersion profiles. For the Grb2-SH2 domain, we observed a wider surface at SH2 for the encounter complex than the phosphopeptide (pY) binding site, which might explain the molecular recognition of remote phosphotyrosine. The Grb2-SH2-pY encounter complex is dominated by electrostatic interactions, which contribute to the fuzziness of the complex, but also have contribution of hydrophobic interactions.


Assuntos
Fosfopeptídeos , Domínios de Homologia de src , Ligantes , Imageamento por Ressonância Magnética , Sítios de Ligação
3.
Channels (Austin) ; 17(1): 2253104, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37695839

RESUMO

The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Ratos , Transporte Biológico , Linhagem Celular , Conformação Molecular
4.
J Chem Inf Model ; 63(10): 3043-3053, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37143234

RESUMO

Peptide toxins that adopt the ShK fold can inhibit the voltage-gated potassium channel KV1.3 with IC50 values in the pM range and are therefore potential leads for drugs targeting autoimmune and neuroinflammatory diseases. Nuclear magnetic resonance (NMR) relaxation measurements and pressure-dependent NMR have shown that, despite being cross-linked by disulfide bonds, ShK itself is flexible in solution. This flexibility affects the local structure around the pharmacophore for the KV1.3 channel blockade and, in particular, the relative orientation of the key Lys and Tyr side chains (Lys22 and Tyr23 in ShK) and has implications for the design of KV1.3 inhibitors. In this study, we have performed molecular dynamics (MD) simulations on ShK and a close homologue, HmK, to probe the conformational space occupied by the Lys and Tyr residues, and docked the different conformations with a recently determined cryo-EM structure of the KV1.3 channel. Although ShK and HmK have 60% sequence identity, their dynamic behaviors are quite different, with ShK sampling a broad range of conformations over the course of a 5 µs MD simulation, while HmK is relatively rigid. We also investigated the importance of conformational dynamics, in particular the distance between the side chains of the key dyad Lys22 and Tyr23, for binding to KV1.3. Although these peptides have quite different dynamics, the dyad in both adopts a similar configuration upon binding, revealing a conformational selection upon binding to KV1.3 in the case of ShK. Both peptides bind to KV1.3 with Lys22 occupying the pore of the channel. Intriguingly, the more flexible peptide, ShK, binds with significantly higher affinity than HmK.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/metabolismo , Venenos de Cnidários/farmacologia , Anêmonas-do-Mar/química , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Conformação Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.2/metabolismo
5.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077748

RESUMO

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Assuntos
COVID-19/virologia , Ácidos Nucleicos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/fisiologia , Sítios de Ligação , DNA/química , DNA/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ácidos Nucleicos/química , Proteínas do Nucleocapsídeo/química , Ligação Proteica , RNA/química , RNA/metabolismo , Análise Espectral , Relação Estrutura-Atividade
6.
Toxicon ; 201: 127-140, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34454969

RESUMO

Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.


Assuntos
Venenos de Escorpião , Toxinas Biológicas , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos , Relação Estrutura-Atividade
7.
Front Mol Biosci ; 8: 706002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307462

RESUMO

In this review, we briefly describe a theoretical discussion of protein folding, presenting the relative contribution of the hydrophobic effect versus the stabilization of proteins via direct surface forces that sometimes may be overlooked. We present NMR-based studies showing the stability of proteins lacking a hydrophobic core which in turn present hydrophobic surface clusters, such as plant defensins. Protein dynamics measurements by NMR are the key feature to understand these dynamic surface clusters. We contextualize the measurement of protein dynamics by nuclear relaxation and the information available at protein surfaces and water cavities. We also discuss the presence of hydrophobic surface clusters in multidomain proteins and their participation in transient interactions which may regulate the function of these proteins. In the end, we discuss how surface interaction regulates the reactivity of certain protein post-translational modifications, such as S-nitrosation.

8.
Biophys J ; 120(14): 2814-2827, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34197802

RESUMO

The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of ß2-ß3 and Δ2-ß5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo/genética , Nucleoproteínas , RNA
9.
Biomol NMR Assign ; 15(2): 341-345, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33914244

RESUMO

During the past 17 years, the coronaviruses have become a global public emergency, with the first appearance in 2012 in Saudi Arabia of the Middle East respiratory syndrome. Among the structural proteins encoded in the viral genome, the nucleocapsid protein is the most abundant in infected cells. It is a multifunctional phosphoprotein involved in the capsid formation, in the modulation and regulation of the viral life cycle. The N-terminal domain of N protein specifically interacts with transcriptional regulatory sequence (TRS) and is involved in the discontinuous transcription through the melting activity of double-stranded TRS (dsTRS).


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Ressonância Magnética Nuclear Biomolecular , Proteínas do Nucleocapsídeo/química , Modelos Moleculares , Domínios Proteicos
10.
Sci Rep ; 10(1): 13040, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747626

RESUMO

The growth factor receptor-bound protein 2 (Grb2) is a key factor in the regulation of cell survival, proliferation, differentiation, and metabolism. In its structure, the central Src homology 2 (SH2) domain is flanked by two Src homology 3 (SH3). SH2 is the most important domain in the recognition of phosphotyrosines. Here, we present the first dynamical characterization of Grb2-SH2 domain in the free state and in the presence of phosphopeptide EpYINSQV at multiple timescales, which revealed valuable information to the understanding of phophotyrosine sensing mechanism. Grb2-SH2 presented two dynamically independent subdomains, subdomain I involved in pY recognition and subdomain II is the pY + 2 specificity pocket. Under semi-saturated concentrations of pY-pep we observed fuzzy interactions, which led to chemical exchange observed by NMR. This information was used to describe the encounter complex. The association with pY-pep is dynamic, involving fuzzy interactions and multiple conformations of pY-pep with negative and hydrophobic residues, creating an electrostatic-potential that drives the binding of pY-pep. The recognition face is wider than the binding site, with many residues beyond the central SH2 binding site participating in the association complex, which contribute to explain previously reported capability of Grb2 to recognize remote pY.

11.
Heliyon ; 5(11): e02869, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31844748

RESUMO

Grb2 is an important regulator of normal vs. oncogenic cell signaling transduction. It plays a pivotal role on kinase-mediated signaling transduction by linking Receptor Tyrosine kinases to Ras/MAPK pathway which is known to bring oncogenic outcome. Coumarins are phenolic molecules found in several plants and seeds widely studied because of the antibiotic, anti-inflammatory, anticoagulant, vasodilator, and anti-tumor properties. Despite several studies about the anti-tumor properties of Coumarin in vivo and the role of Grb2 in signaling pathways related to cell proliferation, a molecular level investigation of the interaction between Grb2 and Coumarin is still missing. In this study, we performed a combined set of biophysical approaches to get insights on the interaction between Grb2 in a dimer state and Coumarin. Our results showed that Coumarin interacts with Grb2 dimer through its SH2 domain. The interaction is entropically driven, 1:1 molecular ratio and presents equilibrium constant of 105 M-1. In fact, SH2 is a well-known domain and a versatile signaling module for drug targeting which has been reported to bind compounds that block Ras activation in vivo. Despite we don't know the biological role coming from interaction between Grb2-SH2 domain and Coumarin, it is clear that this molecule could work in the same way as a SH2 domain inhibitor in order to block the link of Receptor Tyrosine kinases to Ras/MAPK pathway.

12.
Biomol NMR Assign ; 13(2): 295-298, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31028611

RESUMO

Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein composed of three domains, an N-terminal SH3 (nSH3), SH2 and a C-terminal SH3 (cSH3) domains. This multi-domain protein has been reported to be a key factor in many signaling pathways related to controlling cell survival, differentiation, and growth. The Grb2-SH2 domain has been a focus for the study of the interaction with peptides and small molecules to act as inhibitors in uncontrolled cell growth, and consequently inhibit tumor proliferation. Here we describe the almost complete assignment of the free SH2 domain at pH 7. This work prepares the ground for further structural studies, backbone dynamics, mapping of interactions and drug screening and development. TalosN secondary structure prediction showed great similarity with the available structures in the PDB.


Assuntos
Proteína Adaptadora GRB2/química , Ressonância Magnética Nuclear Biomolecular , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...